In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does not transform like a vector under certain discontinuous rigid transformations such as reflections. For example, the angular velocity of a rotating object is a pseudovector because, when the object is reflected in a mirror, the reflected image rotates in such a way so that its angular velocity "vector" is not the mirror image of the angular velocity "vector" of the original object; for true vectors (also known as polar vectors), the reflection "vector" and the original "vector" must be mirror images.
One example of a pseudovector is the Normal vector to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b, RP Feynman: §52-5 Polar and axial vectors, Feynman Lectures in Physics, Vol. 1 that span the plane. The vector is a normal to the plane (there are two normals, one on each side – the right-hand rule will determine which), and is a pseudovector. This has consequences in computer graphics, where it has to be considered when transforming surface normals. In three dimensions, the curl of a polar vector field at a point and the cross product of two polar vectors are pseudovectors.
A number of quantities in physics behave as pseudovectors rather than polar vectors, including magnetic field and torque. In mathematics, in three dimensions, pseudovectors are equivalent to , from which the transformation rules of pseudovectors can be derived. More generally, in n-dimensional geometric algebra, pseudovectors are the elements of the algebra with dimension , written ⋀ n−1 R n. The label "pseudo-" can be further generalized to and , both of which gain an extra sign-flip under improper rotations compared to a true scalar or tensor.
Consider the pseudovector angular momentum . Driving in a car, and looking forward, each of the wheels has an angular momentum vector pointing to the left (by the right-hand rule). If the world is reflected in a mirror which switches the left and right side of the car, the "reflection" of this angular momentum "vector" (viewed as an ordinary vector) points to the right, but the actual angular momentum vector of the wheel (which is still turning forward in the reflection) still points to the left (by the right-hand rule), corresponding to the extra sign flip in the reflection of a pseudovector.
The distinction between polar vectors and pseudovectors becomes important in understanding the effect of symmetry on the solution to physical systems. Consider an electric current loop in the plane that inside the loop generates a magnetic field oriented in the z direction. This system is symmetric (invariant) under mirror reflections through this plane, with the magnetic field unchanged by the reflection. But reflecting the magnetic field as a vector through that plane would be expected to reverse it; this expectation is corrected by realizing that the magnetic field is a pseudovector, with the extra sign flip leaving it unchanged.
In physics, pseudovectors are generally the result of taking the cross product of two polar vectors or the curl of a polar vector field. The cross product and curl are defined, by convention, according to the right hand rule, but could have been just as easily defined in terms of a left-hand rule. The entire body of physics that deals with (right-handed) pseudovectors and the right hand rule could be replaced by using (left-handed) pseudovectors and the left hand rule without issue. The (left) pseudovectors so defined would be opposite in direction to those defined by the right-hand rule.
While vector relationships in physics can be expressed in a coordinate-free manner, a coordinate system is required in order to express vectors and pseudovectors as numerical quantities. Vectors are represented as ordered triplets of numbers: e.g. , and pseudovectors are represented in this form too. When transforming between left and right-handed coordinate systems, representations of pseudovectors do not transform as vectors, and treating them as vector representations will cause an incorrect sign change, so that care must be taken to keep track of which ordered triplets represent vectors, and which represent pseudovectors. This problem does not exist if the cross product of two vectors is replaced by the exterior product of the two vectors, which yields a bivector which is a 2nd rank tensor and is represented by a 3×3 matrix. This representation of the 2-tensor transforms correctly between any two coordinate systems, independently of their handedness.
(In the language of differential geometry, this requirement is equivalent to defining a vector to be a tensor of contravariant rank one. In this more general framework, higher rank tensors can also have arbitrarily many and mixed covariant and contravariant ranks at the same time, denoted by raised and lowered indices within the Einstein summation convention.)
A basic and rather concrete example is that of row and column vectors under the usual matrix multiplication operator: in one order they yield the dot product, which is just a scalar and as such a rank zero tensor, while in the other they yield the dyadic product, which is a matrix representing a rank two mixed tensor, with one contravariant and one covariant index. As such, the noncommutativity of standard matrix algebra can be used to keep track of the distinction between covariant and contravariant vectors. This is in fact how the bookkeeping was done before the more formal and generalised tensor notation came to be. It still manifests itself in how the basis vectors of general tensor spaces are exhibited for practical manipulation.
The discussion so far only relates to proper rotations, i.e. rotations about an axis. However, one can also consider improper rotations, i.e. a mirror-reflection possibly followed by a proper rotation. (One example of an improper rotation is inversion through a point in 3-dimensional space.) Suppose everything in the universe undergoes an improper rotation described by the improper rotation matrix R, so that a position vector x is transformed to . If the vector v is a polar vector, it will be transformed to . If it is a pseudovector, it will be transformed to .
The transformation rules for polar vectors and pseudovectors can be compactly stated as
where the symbols are as described above, and the rotation matrix R can be either proper or improper. The symbol det denotes determinant; this formula works because the determinant of proper and improper rotation matrices are +1 and −1, respectively.
So v3 is also a pseudovector. Similarly one can show that the difference between two pseudovectors is a pseudovector, that the sum or difference of two polar vectors is a polar vector, that multiplying a polar vector by any real number yields another polar vector, and that multiplying a pseudovector by any real number yields another pseudovector.
On the other hand, suppose v1 is known to be a polar vector, v2 is known to be a pseudovector, and v3 is defined to be their sum, . If the universe is transformed by an improper rotation matrix R, then v3 is transformed to
Therefore, v3 is neither a polar vector nor a pseudovector (although it is still a vector, by the physics definition). For an improper rotation, v3 does not in general even keep the same magnitude:
If the magnitude of v3 were to describe a measurable physical quantity, that would mean that the laws of physics would not appear the same if the universe was viewed in a mirror. In fact, this is exactly what happens in the weak interaction: Certain radioactive decays treat "left" and "right" differently, a phenomenon which can be traced to the summation of a polar vector with a pseudovector in the underlying theory. (See parity violation.)
Suppose v1 and v2 are known polar vectors, and v3 is defined to be their cross product, . If the universe is transformed by a rotation matrix R, then v3 is transformed to
Similarly, if v1 is any known polar vector field and v2 is defined to be its curl , then if the universe is transformed by the rotation matrix R, v2 is transformed to
This definition is not equivalent to that requiring a sign flip under improper rotations, but it is general to all vector spaces. In particular, when n is even, such a pseudovector does not experience a sign flip, and when the characteristic of the underlying field of V is 2, a sign flip has no effect. Otherwise, the definitions are equivalent, though it should be borne in mind that without additional structure (specifically, either a volume form or an orientation), there is no natural identification of ⋀ n−1( V) with V.
Another way to formalize them is by considering them as elements of a representation space for . Vectors transform in the fundamental representation of with data given by , so that for any matrix in , one has . Pseudovectors transform in a pseudofundamental representation , with . Another way to view this homomorphism for odd is that in this case . Then is a direct product of group homomorphisms; it is the direct product of the fundamental homomorphism on with the trivial homomorphism on .
The basic multiplication in the geometric algebra is the geometric product, denoted by simply juxtaposing two vectors as in ab. This product is expressed as:
where the leading term is the customary vector dot product and the second term is called the exterior algebra. Using the postulates of the algebra, all combinations of dot and wedge products can be evaluated. A terminology to describe the various combinations is provided. For example, a multivector is a summation of k-fold wedge products of various k-values. A k-fold wedge product also is referred to as a k-blade.
In the present context the pseudovector is one of these combinations. This term is attached to a different multivector depending upon the of the space (that is, the number of linearly independent vectors in the space). In three dimensions, the most general 2-blade or bivector can be expressed as the wedge product of two vectors and is a pseudovector.
In four dimensions, however, the pseudovectors are multivector.
In four dimensions, such as a Dirac algebra, the pseudovectors are multivector.
He says: "The terms axial vector and pseudovector are often treated as synonymous, but it is quite useful to be able to distinguish a bivector from its dual." To paraphrase Baylis: Given two polar vectors (that is, true vectors) a and b in three dimensions, the cross product composed from a and b is the vector normal to their plane given by . Given a set of right-handed orthonormal , the cross product is expressed in terms of its components as:
where superscripts label vector components. On the other hand, the plane of the two vectors is represented by the exterior product or wedge product, denoted by . In this context of geometric algebra, this bivector is called a pseudovector, and is the Hodge dual of the cross product.
For details, see . The cross product and wedge product are related by:
where is called the unit pseudoscalar.
Using the above relations, it is seen that if the vectors a and b are inverted by changing the signs of their components while leaving the basis vectors fixed, both the pseudovector and the cross product are invariant. On the other hand, if the components are fixed and the basis vectors eℓ are inverted, then the pseudovector is invariant, but the cross product changes sign. This behavior of cross products is consistent with their definition as vector-like elements that change sign under transformation from a right-handed to a left-handed coordinate system, unlike polar vectors.
For example,
However, because the cross product does not generalize to other than three dimensions,
the notion of pseudovector based upon the cross product also cannot be extended to a space of any other number of dimensions. The pseudovector as a -blade in an n-dimensional space is not restricted in this way.
Another important note is that pseudovectors, despite their name, are "vectors" in the sense of being elements of a vector space. The idea that "a pseudovector is different from a vector" is only true with a different and more specific definition of the term "vector" as discussed above.
|
|